Target WP1

From PASI
Jump to: navigation, search

This PASI targets work package concerns high-power-density solid target development and operation, including material studies and target monitoring systems. It is coordinated by David Jenkins.

Existing Targets

Milestone 1.1 requires a review of existing (or previously constructed or under-construction) high power targets, whether for neutron spallation or otherwise.

NB:

  • 0 in columns for pulses indicates CW operation.
  • X (@Y) power indicates that X is the design power but has only achieved Y megawatts in operation so far.
  • Powers in Watts are time-averaged; energies in Joules are for an individual pulse. The kJ/pulse column shows beam energy, whereas the volumetric (W/cm3, J/cm3) shows the heat deposited in the target at the most intense point.
  • Temperatures are the max and min attained by the target material during operation. Rise per pulse is the highest ΔT found anywhere in the target.
Facility Power: MW avg. kJ/pulse (rep. rate, Hz) W/cm3 (J/cm3) Material: Target Coolant Window Temperature: Max (Min), °C Rise in pulse, K Beam: Species Energy, GeV Pulse length, <math>\mu</math>s Operation: year(s) beam on target Target lifetime
J-PARC - Current Hadron Target[5] 0.075 3.5 (0.167) 200 (1240) Pt(Au)-rod, Cu-base H2O Be 872 (avg. 407) 710 p 30 2000000 2012
J-PARC - T2K[5] 0.75 2500 (0.3) 83 (300) C He Ti-6Al-4V 800 (30) 196[4] p 30 5 2009 5 years
MiniBooNE[7] 0.032 6.4 (5) 120 (24) Be Air Be 7[4] p 8 1.6 2002 5+ years
NuMI[7] 0.4 750 (0.53) 320 (600) C H2O Be 391[4] p 120 8.6 2004 1 year
ANU/NOvA[7] 0.7 933 (0.75) 450 (600) C H2O Be 391[4] p 120 10 2012 0.5 year
FNAL Pbar[7] 0.052 104 (0.5) 7650 (15300) Inconel Air Be 4287[4] p 120 1.6 1986 0.5 year
PSI SINQ/Solid Target[6] 0.97 0 800 Pb/Zr D2O AlMg3 (D2O cooled) 500 (30) 0 p 0.59 0 1997 2 years
PSI SINQ/MEGAPIE[6] 0.97 0 1000 LBE LBE SS T91 (D2O cooled) 340 (230) 0 p 0.59 0 2006 (only) 1 year
PSI UCN[6] 0.014 (1.42 peak) 10400 (0.00125) 500 Pb/Zr D2O AlMg3 (D2O cooled) 500 (30) 470 p 0.59 2000000–8000000 2011 20+ years
SNS[2] 1.4 (@1.0) 23 (60) 750 (13) Hg (in stainless steel) Hg Inconel-718 (Aluminum-6061 next change-out) 200 (60) 7[4] p 1 0.7 2006 5000MW.hrs design (10DPA), 3250 so far
ISIS TS1[3] 0.2 (@0.16) 4 (50) 1000 (25) W (Ta clad) D2O Inconel-718 (water cooled) 250 (30) 10[4] p 0.8 0.1 (x2, spaced by 0.3) 1985 5 years~
ISIS TS2[3] 0.05 (@0.04) 1 (50) 1000 (100) W (Ta clad) H2O Al alloy 5083-0 (passive He cooled) 400 (36) 39[4] p 0.8 0.1 (x2, spaced by 0.3) 2008 5 years~
LANSCE - Lujan 0.1 5 (20) 350 (18) W 7[4] p 0.8 0.25
LANSCE - UCN  ?  ? (20) 350 (18) W 7[4] p 0.8 0.25
LANSCE - IPF 0.1 5 (20) 350 (18) Various p 0.1? 0.25
CERN's CNGS[9] 0.48 1500~ (2 every 6s, 50ms apart) 320 (1900) C (PT2020) Air (forced convection + radiation cooling) Be 1900~ (300) 800~ p 400 10.5 2007–2012 (~1.5 DPA) 5 years ok
CERN n_TOF[9] 0.023 27.2 (0.83–0.28) 3–20~ (8–50) Pb H2O AA 6082 90~ p 20 0.02 (4σ) 2008 (2nd target) 10 years~ (design)
CERN AD-target[9] 0.026 62.4 (0.4–0.01) 90–3600~ (8700) Ir H2O C block 3000~ (300) 2700~ p 26 0.4 1990+ 3–4 years~ (expected)
CERN North Area (4 targets)[9] 0.2 960 (0.07–0.02) - slow extr. 120~ (550) Be Air Ti 50–60 20 p, ions 400 4800000–9600000 1976~ 30+ years
CERN ISOLDE-solid porous nano[9] 0.003 3.4 (0.4) - 4x230ns / 2μs 32 50% density, micron foils, nanostructured oxides and carbides (Ta, Nb,SiC, UC2-C2, Y2O3, CaO, BeO, …) H2O Al, Ta, Ta/C 600–2300 50–200 p 1–1.4 0.06 1992 (2006 for nano) 1–4 weeks or 1019 protons
CERN ISOLDE-spallation n[9] 0.003 3.4 (0.4) - 4x230ns / 2μs 160 W H2O Al 200 p 1–1.4 0.06 2002 1–4 weeks or 1019 protons
CERN ISOLDE - molten metal[9] 0.001 1.2 (0.4) - 4x230ns / 2μs La, Pb, Sn H2O Al, Ta 300–1400 100–500 p 1–1.4 0.06 1994 1–4 weeks or 1019 protons
Birmingham - BNCT Target[8] 0.0045 (now); 0.01 (future) 0 140000 Li with Cu backing D2O None 140~ 0 p 0.0028 0 1980s onward 5 years~

Sources

Original whole table: John Haines (SNS), updated by Patrick Hurh (FNAL), arrived at Stephen Brooks (RAL) via ISIS.

  1. http://www.hep.princeton.edu/mumu/target/Ilias/ilias_101909.pdf slide 4
  2. E-mail from Bernie Riemer, Van Greaves (ORNL). 200°C is maximum mercury hot-spot temperature, 60°C is worst-case inlet temperature.
  3. David Jenkins (ISIS, RAL)
  4. Rough calculations by Stephen Brooks using the J/cm3 column and densities and specific heats of materials from the web at room temperature. Should be replaced by more accurate values if possible.
  5. E-mail from Hideaki Hotchi (J-PARC).
  6. E-mail from Bertrand Blau (PSI).
  7. Updated spreadsheet from Patrick Hurh (FNAL).
  8. Spreadsheet from Rob Edgecock (RAL/Huddersfield).
  9. Spreadsheet from Marco Calviani (CERN).

Future Targets

Milestones 1.2 and 1.3 require knowledge of the requirements for future high power target projects and candidate target materials.

Facility Power: MW avg. kJ/pulse (rep. rate) W/cm3 (J/cm3) Material: Target Coolant Window Temperature: Max (Min), °C Rise in pulse, K Beam: Species Energy, GeV Pulse length, <math>\mu</math>s Operation: expected beam on target Expected lifetime
ESS Lund[3] 5 357 (14) 5200 (371) W He  ? 500 137 p 2.5 2860 2019
EURISOL 4 80 (50) 100000 (2000) Hg 1059[2] p 2.2 3
IFMIF 10 0 100000 Li(l) 0 d 0.04 0
J-PARC - Future Hadron Target[4] 0.75 32 (0.292) 140 (98) rotating Ni disk H2O Be 78.6 (47.9) 30.7 p 50 700000
J-PARC - T2K Upgrade 4 13333 (0.3)  ? (?) C p 50 5
Project X - Kaon[5] 1+ 0  ? C 0 p 3 0 2024 2 years
Project X - Muon[5] 1+ 0  ? C 0 p 3 0 2024 2 years
Project X - Nuclear[5] 1+ 0  ? High-Z 0 p 1.5-3 0 2020 2 years
Project X - Energy Station[5] 1+ 0  ? LBE? 0 p 1.5-3 0 2020 1 year
LBNE[5] 0.7 1000 (0.7) 178 (254) C H2O Be 166[2] p 120 10 2023 0.5 year
LBNE - Upgrade[5] 2.3 3286 (0.7) 592 (846) C 552[2] p 120 10 2030 0.25 year
FRIB 0.4 0 60000000 C 0 Ions (p to U) 1-48 0
SNS STS long pulse 1.5 75 (20) 39 (57) W/Ta (rotating) or Hg p 1.3 1000
Neutrino Factory[1] 4 27 (50x3) 100000 (750) Hg (jet) Hg 1221[2] (30) 397[2] p 5-15 0.007 (x3 in 240)
Muon Collider[1] 4 270 (15) 100000 (7500) Hg (jet) Hg 4002[2] (30) 3972[2] p 5-15 0.007
LANSCE - Mat Test 0.8 6.7 (120) 2400 (20) LBE 12[2] p 0.8 1000
Mu2e[6] 0.008 0.00001 (600000) 660 W/Ir Radiation Be? 1500 (steady state) p 8
Myrrha[6] 2.4 0 0 Pb-Bi eutectic Pb-Bi Undecided p 0.6
FAFNIR[6] 1 0 0 C (rotating) Radiation d 0.04
Kyoto - BNCT[6] 0.03 0 ~100 (ave) Be H2O None 0 p 0.01 0 2013

Sources

Original table John Haines (SNS), updated by Patrick Hurh (FNAL), arrived at Stephen Brooks (RAL) via ISIS.

  1. E-mail from Kirk McDonald (Princeton).
  2. Rough calculations by Stephen Brooks using the J/cm3 column and densities and specific heats of materials from the web at room temperature. Should be replaced by more accurate values if possible. Neutrino factory max temperature calculated with the heating from 3 sub-pulses.
  3. Information via Tristan Davenne (high-power targets group, technology divison, RAL)
  4. E-mail from Hideaki Hotchi (J-PARC).
  5. Updated spreadsheet from Patrick Hurh (FNAL).
  6. Spreadsheet from Rob Edgecock (RAL/Huddersfield).

Target Materials

Milestone 1.3.1 requires a survey of target materials already in use. Rob Edgecock has prepared the table below of current target materials.

Target Material Product Location Target type Beam particle Energy Mean power Rep. rate W/cm3 kJ/pulse Comments
Lithium Neutrons via Li(p,n)Be Various Solid and liquid p ≥2 MeV ≤12 kW (solid) DC 100000 0
7Be via the same reaction
Beryllium Neutrons via Be(p,n) Various Solid p ~10 MeV 30 kW CW ~100 0
Muons TRIUMF Solid p 500 MeV 100 kW CW
Neutrinos FNAL (MiniBooNE) Solid p 8 GeV 30 kW pulsed 5Hz 120 6.4
Various CERN SPS Solid p 450 GeV 300 kW pulsed
Boron 7Be via 10B(p,α)7Be Solid p >1 MeV Low Not routinely used.
Carbon Neutrinos CERN (CNGS) Solid p 400 GeV 510 kW pulsed 2 bunches every 6s  ? 1500
Anti-protons CERN (AD) Solid p 26 GeV 60 kW pulsed
Neutrinos FNAL (NuMI) Solid p 120 GeV 375 kW pulsed 0.5Hz 320 750
Neutrinos T2K Solid p 30 GeV 135 kW pulsed 0.3Hz 80 2500
Muons PSI Rotating p 600 MeV 40 kW CW
Muons TRIUMF Solid p 500 MeV 100 kW CW
Muons RAL Solid p 800 MeV 20 kW pulsed
Nitrogen-13 via 12C(d,n)13N Various Solid or carbon slurry d 10 MeV 4 kW CW
Nitrogen Carbon-11 via 14N(p,α)11C Various Gas p 25 MeV >1 kW CW
Oxygen-15 via 14N(d,n)15) Various Gas d 10 MeV 4 kW CW
Oxygen Florine-18 via 18O(p,n)18F Everywhere! 18O enriched in water p 14 MeV ≥1 kW CW
Nitrogen-13 via 16O(p,α)13N Various Water p 20 MeV >2 kW CW
Neon Florine-18 via 20Ne(d,α)18F Various Gas d 15 MeV >2 kW CW Not the favoured reaction
Sulphur 34mCl via S(p,x)34mCl Various Solid p 20 MeV <1 kW CW Not the favoured reaction
Chlorine 34mCl via Cl(p,x)34mCl  ? p 40 MeV
Scandium Neutrons (via D-T) Various Solid p 180 kV small! Both
45Ti via 45Sc(p,n)45Ti Lund Solid p 6 MeV 120 W DC
Titanium Vanadium-48 via 48Ti(p,n)48V Various Solid p 20 MeV ~1 kW CW
Manganese Cobalt-57 via Mn(α,2n)57Co Solid α 40 MeV ~1 kW CW
Iron-55 via Mn(p,n)55Fe Solid p 10 MeV ~2 kW CW
Iron Cobalt-55 via Fe(p,x)55Co Solid natural iron p 30 MeV >5 kW CW
Cobalt Copper-61 via 59Co(α,2n)61Cu Solid α 40 MeV ~2 kW CW
Nickel Anti-protons FNAL Solid rotatable p 120 GeV 200 kW pulsed 0.5Hz 7000 130
Cobalt-55 via Ni(p,x)55Co Ni layer on Cu p 25 MeV >5 kW CW
Cobalt-57 via Ni(p,x)57Co Ni layer on Cu p 40 MeV ~2 kW CW
Copper Zinc-62 via Cu(p,x)62Zn Cu foil p 40 MeV ~5 kW CW
Zinc-63 via Cu(p,x)63Zn Cu foil p 20 MeV ~3 kW CW
Zinc Germanium-68 via Zn(α,x)68Ge Solid α 50 MeV >10 kW CW
Gallium Germanium-68 via Ga(p,x)68Ge Niobium coated gallium p 50 MeV >10 kW CW 68Ge usually produced with large accelerators
Germanium Arsenic-73 via Ge(p,x)73As Ge foil p 20 MeV >5 kW CW Currently done at 100 MeV at LANL
Arsenic-73 via Ge(α,x)73As Ge foil α 40 MeV >5 kW CW
Arsenic-74 via Ge(p,n)74As Ge foil p 5 MeV >5 kW CW
Arsenic Bromine-75 via 75As(α,4n)75Br Solid, usually alloy α 40 MeV >2 kW CW
Bromine-76 via 75As(α,3n)76Br Solid, usually alloy α 30 MeV >2 kW CW
Bromine-77 via 75As(α,2n)77Br Solid, usually alloy α 25 MeV >2 kW CW
Bromine Bromine-76 via Br(p,xn)76Kr Solid as a salt p 65 MeV >10 kW CW
Bromine-76 via Br(d,xn)76Kr Solid as a salt d 80 MeV >10 kW CW
Krypton Rubidium-81 via Kr(p,x)81Rb Gas p 70 MeV >5 kW CW
Rubidium Strontium-82 via 85Rb(p,4n)82Sr Solid p 60 MeV >10 kW CW
Strontium Yttrium-86 via 88Sr(p,3n)86Y Solid as oxide p 50 MeV >5 kW CW
Yttrium-88 via 88Sr(p,n)88Y Solid as oxide p 25 MeV ~2 kW CW
Yttrium Zirconium-89 via Y(p,n)89Zr Yttrium foil p 20 MeV ~2 kW CW
Rhodium Palladium-103 via 103Rh(p,n)103Pd Solid in various forms p 20 MeV >2 kW CW
Silver Cadmium-109 via 109Ag(p,n)109Cd Silver foil or oxide p 12 MeV >5 kW CW
Cadmium Indium-111 via Cd(p,xn)111In Cd on Cu backing p 25 MeV ~2 kW CW
Iodine 120gI via 127I(p,8n)120Xe Molten salt or liquid iodine p >65 MeV >10 kW CW
Iodine-123 via 127I(p,5n)123I Molten salt or liquid iodine p >55 MeV >5 kW CW
Xenon-122 via 127I(p,6n)122Xe p 80 MeV >10 kW CW
Xenon-127 via 127I(p,n)127Xe p 20 MeV >5 kW CW
Tantalum Neutrons via spallation E.g. ISIS Solid p 800 MeV 130 kW pulsed 50Hz 700 3 No longer used anywhere?
Tungsten-178 via 181Ta(p,4n)178W E.g. BLIP, BNL Ta foil p 50 MeV >3 kW CW
Tungsten Neutrons via spallation ISIS, LANSCE Solid (Ta coating) p 800 MeV 180 kW pulsed 50Hz 1000 4
Neutrons ISOLDE Solid p 1.4 GeV 5.7 kW pulsed 0.8Hz 5000
X-rays e.g. x-ray linacs Solid e 10 MeV
Platinum 195mHg via Pt(α,x)195mHg Solid α >40 MeV >2 kW CW
Hadrons JPARC Solid p 30 GeV 75 kW pulsed 0.2Hz 200 3.5 Now replaced
Gold 195mHg via 197Au(p,3n)195mHg Solid p 40 MeV >2 kW CW
Hadrons JPARC Solid p 30 GeV 75 kW pulsed 0.2Hz 200 3.5
Mercury Neutrons via spallation SNS, JSNS Liquid contained p 1 GeV 1.4 MW pulsed 60Hz 750 20
Tallium Lead-203 via Tl(p,x)203Pb Solid, as oxide p 35 MeV >1 kW CW
Tallium-201 via 203Tl(p,3n)201Pb Various Enriched 203Tl p 35 MeV ~2 kW CW Widely used radioisotope
Lead Neutrons via spallation PSI (SINQ), CERN (n-TOF) Solid, Zirkaloy clad p 590 MeV, 26 GeV 1 MW, 22 kW CW 800 0
Bismuth Astatine-211 via 209Bi(α,2n)211At Solid α ~30 MeV Low
Radium Actinium-225 via 226Ra(p,2n)225Ac Solid p ~17 MeV Low CW Limited use
Uranium Neutrons via spallation ISIS Solid p 800 MeV 120 kW pulsed 50Hz 700 3 Not used for long
Neutrons via photonuclear reactions IRMM Solid cooled with mercury! e 100 MeV 10 kW (ave) pulsed
Inconel Antiprotons FNAL Solid p 120 GeV 50 kW pulsed 0.5Hz 11000 190

Future

Target Material Product Location Target type Beam particle Energy Mean power Rep. rate W/cm3 kJ/pulse Comments
Titanium Positrons ILC Solid photon 10 MeV 145 kW 5 Hz
Gallium Neutrinos Neutrino Factory Liquid p 10 GeV 4 MW 50 Hz Possible alternative to Hg
Molybdenum 99mTc via 100Mo(p,2n)99mTc Solid p 24 MeV 500 kW CW Possibility for neutron spallation?
Iridium Muons Mu2e Solid p 8 GeV 8 kW pulsed Possibility for neutron spallation?
Mercury Neutrinos Neutrino Factory Liquid jet p 10 GeV 4 MW pulsed
Lead-bismuth Neutrons MYRRHA Liquid p 600 MeV 2.4 MW CW
Neutrons PSI Liquid p 590 MeV >1 MW pulsed

Overlap with RadiATE

The RadiATE (Radiation damage in Accelerator Target Enviroments) project between the UK and US labs overlaps with the PASI targets UK remit. Particularly in milestones 1.5 (assessing target lifetime due to radiation) and 1.6 (radiation damage studies at an existing facility). There is considerable interest in dissecting irradiated targets for material studies.

Meetings

WP1 meetings may be found in the list of PASI Targets meetings.